Friday, November 2, 2007

Winter Coming

Nature Watch
November 2, 2007

By Susan Benson
Director of Education
Cable Natural History Museum

Chilly fall days give us a warning that winter is coming, and in response plants and animals (including we humans) adjustment accordingly.

The changing of the season also affects the behavior of bodies of water. You may have heard people referring to lakes “turning” this time of year, and wondered what that means.

It’s a twice-yearly phenomenon related to water and air temperature—here’s how it works: In late summer, lake surface waters reach their annual maximum temperatures. Deeper waters are cooler—in many lakes, there is a definite stratification or layering of water temperatures that you would feel if you were swimming on the surface and then dove down deep. The warmest, least dense waters lie on top; water temperature decreases with depth, reaching its minimum temperature at the greatest lake depths.

In the summer, a deep lake will have three layers in the water column: the upper, warmest water (the epilimnion); a thin middle layer, where temperatures rapidly decrease (the thermocline or mesolimnion); and the deepest, coldest water (hypolimnion).

In autumn, cooler air temperatures and diminished hours of sunlight result in a loss of heat from the lake’s upper water layer. As these waters cool, they become more dense and when they reach about 50 degrees F, they sink into the middle layer below, erasing the temperature stratification that had developed during summer.

Eventually, all the lake water reaches a uniform temperature, and surface winds then mix all the water. When the winds are strong and fairly constant in direction for an extended time, they establish a water circulation pattern—as surface waters are blown downwind, waters from below must rise along the upwind shore to replace those waters pushed across the surface. To complete the circuit, the downwind shore surface waters, piled up by the wind, sink to replace the rising bottom waters.

In time, the resulting circulations will completely overturn and mix all the lake’s water—hence “fall turning.” The phenomenon can at times produce a rotten-egg odor, since the deep waters, which are low in oxygen and high in sulphur, rise to the surface and release sulphurous gases into the air. The turnover also mixes atmospheric oxygen into the lake water, replenishing the oxygen in deep waters and allowing fish to return to the depths where many will spend the winter.

Of course, after the fall turning cools the lakewater and as winter approaches, surface waters approach the freezing mark. Unlike most compounds, water reaches its maximum density as a liquid just before becoming a solid. Under normal conditions, freshwater is most dense at 39 degrees F, and ice, being less dense than liquid water, floats. So as lake waters cool, they sink when they reach 39 degrees. Colder water remains above, and is eventually covered with ice.

In the spring, the cycle happens again in reverse. Ice cover melts, and cold surface waters warm until they reach the temperatures of the bottom waters. Winds blowing over the lake again set up a full circulation system; as warming continues, the three water layers again become established, and a full turn of the cycle is complete.

Nature Watch is brought to you by the Cable Natural History Museum. For 40 years, the Museum has served as a guide and mentor to generations of visitors and residents interested in learning to better appreciate and care for the extraordinary natural resources of the region. The Museum invites you to visit its facility in Cable at 43570 Kavanaugh Street or on the web at to learn more about exhibits and programs.

No comments:

Post a Comment